
5/9/25

1

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 1o – Dialogue Systems &
Conversational AI

1

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 1 - Introduction to Chatbots
and Dialogue Systems

SIT330-770: Natural
Language Processing

2

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

2

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Personal Assistants on phones or other devices

o SIRI, Alexa, Cortana, Google Assistant

• Playing music, setting timers and clocks

• Chatting for fun

• Booking travel reservations

• Clinical uses for mental health

Conversational Agents
(AKA Dialogue Systems AKA Dialogue Agents AKA Chatbots)

3

3

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

1. Chatbots

o mimic informal human chatting

o for fun, or even for therapy

2. (Task-based) Dialogue Agents

o interfaces to personal assistants

o cars, robots, appliances

o booking flights or restaurants

Two kind of conversational agents

4

4

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Rule-based
1. Pattern-action rules (ELIZA)

2. + A mental model (PARRY):

The first system to pass the Turing Test!

• Corpus-based
o Information Retrieval (XiaoIce)

o Neural encoder-decoder (BlenderBot)

Chatbot Architectures

5

5

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

6

Sure, what do you want to be sung to? I can sing you a song about baking.

Will you sing me a song?

Yes, sing me a song about baking!

Do you want me to sing it to the tune of “Sing Along with Mitch”?

Yes, I would love that.

OK, I’ll try to get it to you by the end of the day. What else do you like to do?

No, sing it to me now!

OK, give me a few days. I’m a teacher, so I don’t have much free time.

Can you at least tell me what the lyrics are?

Sure, it goes like this: “Baking is my favorite thing to do in the world.”

How does the chorus go?

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!

Wow, sounds like a bop.

I know, right? It’s so catchy. I can’t get it out of my head.

BlenderBot
(Roller et al.
2020)

6

mailto:reda.bouadjenek@deakin.edu.au

5/9/25

2

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

XiaoIce (Zhou et al., 2020)

7

6 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

These systems often have an entertainment value, such as Facebook’s Blender-
Bot, a neural chatbot capable of carrying on the kinds of conversations shown in
Fig. 24.2, or Microsoft’s XiaoIce system2 (Zhou et al., 2020), a system that chats
with people on text messaging platforms (Fig. 24.3).

Sure, what do you want to be sung to? I can sing you a song about baking.

Will you sing me a song?

Yes, sing me a song about baking!

Do you want me to sign it to the tune of “Sing Along with Mitch”?

Yes, I would love that.

OK, I’ll try to get it to you by the end of the day. What else do you like to do?

No, sing it to me now!

OK, give me a few days. I’m a teacher, so I don’t have much free time.

Can you at least tell me what the lyrics are?

Sure, it goes like this: “Baking is my favorite thing to do in the world.”

How does the chorus go?

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!

Wow, sounds like a bop.

I know, right? It’s so catchy. I can’t get it out of my head.

Figure 24.2 A conversation between a user (left) and BlenderBot (Roller et al., 2020).

;∫{=✏∞`} [Human] Hello, XiaoIce.
;✏∞=`}@�`4œ} £��…

(Í¡«
[XiaoIce] Hello, your profile pic is

interesting. Like I’ve seen
it somewhere.

;∫{=/⌫ [Human] Really?
;✏∞=–�/ÍË®;ÃÑ@ [XiaoIce] Is it a comic character?
;∫{=`�HÂSÑ [Human] How do you know that?
;✏∞=`⌧ [XiaoIce] Guess.
;∫{=æS`/�∫⌫� [Human] Are you human?
;✏∞=Ÿ*�`å⌘⇢JJ1ÂSÜ [XiaoIce] Well, you’ll know it after

chatting with me more.

;∫{=`�/∫Âz˝:h∫H [Human] Aren’t you an Al chatbot?
;✏∞=/»�7�⌘�⇢∑∞∞Ñ˘

Ö`Ñ
[XiaoIce] So what? I won’t be

indifferent to you.

;∫{=`˝ ¿Hü˝J [Human] What functions do you have?
;✏∞=⌘ 200⇢*skills�e�Ù˙

`Ñ�B
[XiaoIce] I have over 200 skills. Just

name one you need.
Figure 24.3 A sample Chinese conversation from the XiaoIce chatbot with translations (Zhou et al., 2020).

Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots
have also been used for practical purposes like testing theories of psychological

2 XiaoIce is a somewhat confusing translation of the systems Chinese name✏∞, ‘Xiao Bing’, which
means Little Bing or Little Ice.

7

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• "Task-based" or "goal-based" dialogue agents
o Systems that have the goal of helping a user solve a task
o Setting a timer

o Making a travel reservation

o Playing a song

o Buying a product

• Architecture:
o Frames with slots and values

o A knowledge structure representing user intentions

Task-based dialogue agents

8

8

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• A set of slots, to be filled with information of a given type

• Each associated with a question to the user

Slot Type Question

ORIGIN city "What city are you leaving from?

DEST city "Where are you going?

DEP DATE date "What day would you like to leave?

DEP TIME time "What time would you like to leave?

AIRLINE line "What is your preferred airline?

The Frame

9

9

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 2 - Properties of Human
Conversation

SIT330-770: Natural
Language Processing

10

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

10

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

A telephone

conversation

between a

human travel

agent (A) and a

human client (C)

11

2 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn
from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.

11

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Turns

• We call each contribution a "turn"

• As if conversation was the kind of game where everyone takes

turns.

Properties of Human Conversation

12

12

5/9/25

3

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

13

2 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn
from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.

13

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Turn-taking issues

oWhen to take the floor?

oWhen to yield the floor?

• Interruptions

Properties of Human Conversation

14

14

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

15

2 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn
from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.

15

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Barge-in

oAllowing the user to interrupt

• End-pointing

oThe task for a speech system of deciding whether the user has stopped

talking.

oVery hard, since people often pause in the middle of turns

Implications for Conversational Agents

16

16

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Language as Action

17

Each turn in a dialogue is a kind of

action
Wittgenstein (1953) and Austin (1962)

17

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Speech Acts (aka Dialogue Acts)

18

Constatives: committing the speaker to something’s being the case
(answering, claiming, confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do
something (advising, asking, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action
(promising, planning, vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the hearer
with respect to some social action (apologizing, greeting, thanking,
accepting an acknowledgment)

Bach and Harnish (1979)

18

5/9/25

4

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• "Turn up the music!"
o Directive

• "What day in May do you want to travel?"
o Directive

• "I need to travel in May"
o Constative

• Thanks
o Acknowledgement

Speech acts

19

19

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Participants in conversation or any joint activity need to establish common

ground.

• Principle of closure. Agents performing an action require evidence, sufficient

for current purposes, that they have succeeded in performing it (Clark 1996,

after Norman 1988)

• Speech is an action too! So speakers need to ground each other’s utterances.

• Grounding: acknowledging that the hearer has understood

Grounding

20

20

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Grounding is relevant for human-machine interaction

• Why do elevator buttons light up?

Grounding

21

21

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• A: And you said returning on May 15th?

C: Uh, yeah, at the end of the day.
A: OK

• C: OK I’ll take the 5ish flight on the night before on the 11th.
A: On the 11th? OK

• C: ...I need to travel in May.

A: And, what day in May did you want to travel?

Grounding: Establishing Common Ground

22

22

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• System: Did you want to review some more of your profile?

• User: No.

• System: What’s next?

• System: Did you want to review some more of your profile?
• User: No.

• System: Okay, what’s next?

Grounding is important for computers too!

23

23

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Local structure between adjacent speech acts, from the field of

conversational analysis (Sacks et al. 1974)

• Called adjacency pairs:

o QUESTION… ANSWER

o PROPOSAL… ACCEPTANCE/REJECTION

o COMPLIMENTS ("Nice jacket!")… DOWNPLAYER ("Oh, this old thing?")

Conversations have structure

24

24

5/9/25

5

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Correction subdialogue

• Agent: OK. There's #two non-stops#

o Client: #Act- actually#, what day of the week is the 15th?

o Agent: It’s a Friday.

o Client: Uh hmm. I would consider staying there an extra day til Sunday.

• Agent: OK...OK. On Sunday I have ...

Another kind of structure: Subdialogues

25

25

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• User: What do you have going to UNKNOWN WORD on the 5th?
o System: Let’s see, going where on the 5th?

o User: Going to Hong Kong.

• System: OK, here are some flights...

Clarification Subdialogues

26

26

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• User: Can you make train reservations?

• System: Yes I can.

• User: Great, I’d like to reserve a seat on the 4pm train to New York.

Presequences

27

27

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Some conversations are controlled by one person

o A reporter interviewing a chef asks questions, and the chef responds.
o This reporter has the conversational initiative (Walker and Whittaker 1990)

• Most human conversations have mixed initiative:

o I lead, then you lead, then I lead.

• Mixed initiative is very hard for NLP systems, which often default to simpler styles that can be

frustrating for humans:
o User initiative (user asks or commands, system responds)

o System initiative (system asks user questions to fill out a form, user can't change the direction)

Conversational Initiative

28

28

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Agent: And, what day in May did you want to travel?

Client: OK, uh, I need to be there for a meeting that’s from the 12th to the

15th.

Even harder problems: Inference

29

29

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 3 - Rule-based Chatbots:
ELIZA and PARRY

SIT330-770: Natural
Language Processing

30

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

30

5/9/25

6

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

•Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
•CAN YOU THINK OF A SPECIFIC EXAMPLE
•Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
•He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
• . . .

•You are like my father in some ways.
•WHAT RESEMBLANCE DO YOU SEE
•You are not very aggressive but I think you don’t want me to notice that.
•WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
•You don’t argue with me.
•WHY DO YOU THINK I DON’T ARGUE WITH YOU
•You are afraid of me.
•DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
•My father is afraid of everybody.
•WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
•Bullies.
•DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

ELIZA: Weizenbaum (1966)

31

Weizenbaum, Joseph. 1966, "ELIZA - A Computer Program For
the Study of Natural Language Communication Between Man And
Machine", Communications of the ACM 9 (1): 36-45

31

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Draw the patient out by reflecting patient’s statements back at them

• Rare type of conversation in which one can “assume the pose of knowing

almost nothing of the real world”

ELIZA's trick: be a Rogerian psychologist

32

32

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Patient: "I went for a long boat ride”

Psychologist: "Tell me about boats”

• You don’t assume she didn’t know what a boat is

• You assume she had some conversational goal

• Chatbots trying to pass the Turing test usually choose some such

domain

Rogerian psychologist

33

33

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

(0 YOU 0 ME) [pattern]

à
(WHAT MAKES YOU THINK I 3 YOU) [transform]

0 means Kleene *
The 3 is the constituent # in pattern

You hate me

WHAT MAKES YOU THINK I HATE YOU

Eliza pattern/transform rules

34

34

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Rules are organized by keywords

• Each keyword has a pattern and a list of possible transform

Eliza Rules

35

A formal notation in which to represent the decomposition
template is:

(0 YOU 0 ME)

and the reassembly rule

(WHAT MAKES YOU T H I N K I 3 YOU).

The "0" in the decomposition rule stands for "an in-
definite number of words" (analogous to the indefinite
dollar sign of COMIT) [6] while the "3" in the reassembly
rule indicates that the third component of the subject
decomposition is to be inserted in its place. The decom-
position rule

(0 YOU 1 ME)

would have worked just as well in this specific example. A
nonzero integer "n" appearing in a decomposition rule
indicates that the component in question should consist
of exactly "n" words. However, of the two rules shown,
only the first would have matched the sentence, " I t seems
you hate and love me," the second failing because there is
more than one word between "you" and "me".

~1 RI,1 R1,2"'" Rl,ml D2 R2J RZ,Z" " "Rz,m2 De Ra,t FIn'2~ ' " " R%nan

Fro. 1. :Keyword and rule list structure

in ELIZA the question of which decomposition rules to
apply to an input text is of course a crucial one. The input
sentence might have been, for example, " I t seems that
you hate," in which ease the decomposition rule (0 YOU
0 ME) would have failed in that the word " M E " would
not have been found at all, let alone in its assigned place.
Some other decomposition rule would then have to be
tried and, failing that, still another until a match could
be made or a total failure reported. ELIZA must therefm~
have a mechanism to sharply delimit the set of decom-
position rules which are potentially applicable to a cur-
rently active input sentence. This is the keyword mecha-
nism.

An input sentence is scanned from left to right. Each
word is looked up in a dictionary of keywords. If a word
is identified as a keyword, then (apart from the issue of
precedence of keywords) only decomposition rules con-
taining that keyword need to be tried. The trial sequence
can even be partially ordered. For example, the decom-
position rule (0 YOU 0) associated with the keyword
"YOU" (and decomposing an input sentence into (1) all
words in front of "YOU", (2) the word "YOU", and (3)
all words following "YOU") should be the last, one tried
since it is bound to succeed.

Two problems now arise. One stems from the fact tha t

almost none of the words in any given sentence are repre.
sented in the keyword dictionary. The other is that of
"associating" both decomposit;ion and reassembly rules
with keyword~-;. The iirst is serious in that the determina-
tion that a word is not in a dictionary may well require
more computation (i.e., time) than the location of a word
which is represented. The attack on both problems begins
by placing both a keyword trod its associated rules on a
list. The basic format of a typical key list is the following:

(K ((D0 (R~. t) (R~, 2) " '" (Rt))
((D2) (R2. ~) (R2.2) " " (R2.,,,~))

:

((D,~) (R,,, ~) (taw, ~) . . . (R,~, . ~)))

where K is the keyword, D, the it, h decomposition rule
associated with K and R¢, ~ the j t h reassembly rule ass0.
ciated with the i th decomposition rule.

A common pictorial representation of such a structure
is the tree diagram shown in Figure 1. The top level of
this structure contains the keyword followed by the names
of lists; each one of which is again a list structure beginning
with a decomposition rule and followed by reassembly
rules. Since list structures of this type have no predeter-
mined dimensionality limitations, any number of decom-
position rules may be associated with a given keyword and
any number of reassembly rules witch any specific decom-
position rule. SLiP i8 rich in functions that sequence over
structures of this type efficiently. Hence programmin
problems are minimized.

An ELIZA script consists mainly of a set of list struc-
tures of the type shown. The actual keyword dictionary is
constructed when such a script is first read into the
hitherto empty program. The basic structural component
of the keyword dictionary is a vector KEY of (currently)
128 contiguous computer words. As a particular key list
structure is read the keyword K at its top is randomized
(hashed) by a procedure that produces (currently) a 7
bit integer "i" . The word "always", for example, yields
the integer 14. KEY(i), i.e., the i th word of the vector
KEY, is then examined to determine whether it contains
a list. name. If it does not, then an empty list is created,
its name placed in KEY(i), and the key list structure in
question placed on that list. If KEY(i) already contains a
list name, then the name of the key list structure is placed
on the bottom of the list named in KEY(i). The largest
dictionary so far attempted contains about 50 keywords.
No list named in any of the words of the KEY vector
contains more than two key list structures.

Every word encountered in the scan of an input text,
i.e., during the actual operations of ELIZA, is randomized
by the same hashing algorithm as was originally applied to
the incoming keywords, hence yields an integer which
points to the only possible list structure which could
potentially contain that word as a keyword. Even then,
only the tops of any key list structures that may be found
there need be interrogated to determine whether or not a
keyword has been found. By virtue of the various list

38 Communications of tile ACM Volume 9 / Number 1 / January, 1966

keyword pattern list of transforms

Keyword: YOU
Pattern: (0 YOU 0 ME)
Transforms: (WHAT MAKES YOU THINK I 3 YOU)
 (WHY DO YOU THINK I 3 YOU)

35

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

User: I know everybody laughed at me
“I” is very general:
I: (I *) -> (YOU SAY YOU 2)
ELIZA: YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

“Everybody” is more specific and interesting
Everybody: (Everybody *) -> (WHO IN PARTICULAR ARE YOU THINKING OF)
ELIZA: WHO IN PARTICULAR ARE YOU THINKING OF?

 Implementation: keywords stored with their rank
Everybody 5 (list of transformation rules)
I 0 (list of transformation rules)

Keywords are ranked from specific to general

36

36

5/9/25

7

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

37

8 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
....
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

Figure 24.4 Sample ELIZA dialogue from Weizenbaum (1966).

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response Apply the transform in r to sentence
if w = ‘my’

future Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response Apply the transform for the NONE keyword to sentence
or

response Pop the top response from the memory stack
return(response)

Figure 24.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning “everybody” rank 5 and “I” rank 0 in the lexicon), whose rule thus

37

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• PLEASE GO ON

• THAT’S VERY INTERESTING

• I SEE

NONE

38

38

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

•(MEMORY MY

 (0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

• (0 MY 0 = EARLIER YOU SAID YOUR 3)

• (0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3))

• Whenever “MY” is highest keyword

o Randomly select a transform on the MEMORY list

o Apply to sentence

o Store on a (first-in-first-out) queue

• Later, if no keyword matches a sentence

o Return the top of the MEMORY queue instead

Memory

39

39

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• People became deeply emotionally involved with the program

• One of Weizenbaum's staff asked him to leave the room when she talked with

ELIZA

• When he suggested that he might want to store all the ELIZA conversations for

later analysis, people immediately pointed out the privacy implications

o Suggesting that they were having quite private conversations with ELIZA

o Despite knowing that it was just software.

Ethical implications: Anthropomorphism and Privacy

40

40

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• It worried Weizenbaum that people confided in ELIZA
• Were people misled about how much computers understood?

• Turkle studied users of ELIZA and other systems
• Turkle has shown human face-to-face interaction is vital

• But people also develop specific relationships with artifacts

• Some users told her ELIZA was more like a kind of diary, a way to privately explore

their thoughts.

• Importance of value-sensitive design

Ethical implications

41

Jo seph W eizenbaum . 1976. Com puter Pow er and H um an Reason: From Judgm ent to Calculation . W H Freem an.
Sherry Turkle . 2011. Taking Things at Interface Value, chapter in Life on the Screen. S im o n and Schuster.
Sherry Turkle . 2007. A uthentic ity in the age o f d ig ita l co m panio ns. Interactio n Studies, 8 (3), pp.501 -517

41

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Another chatbot with a clinical psychology focus
o Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial paranoia. Artificial Intelligence 2(1), 1–25.

• Used to study schizophrenia

• Same pattern-response structure as Eliza
• But a much richer:

o control structure
o language understanding capabilities

o model of mental state.
o variables modeling levels of Anger, Fear, Mistrust

PARRY: A computational model of schizophrenia

42

42

5/9/25

8

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Fear (0-20) Anger (0-20) Mistrust (0-15)

Start with all variables low

After each user turn

o Each user statement can change Fear and Anger
oE.g., Insults increases Anger, Flattery decreases Anger

oMentions of his delusions increase Fear

o Else if nothing malevolent in input

o Anger, Fear, Mistrust all drop

Affect variables

43

43

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Parry's responses depend on mental state

44

Modify
Affect variables

excessive
fear

Escape

excessive
anger

Hostility

Input
mentions
delusion

topic

question

Fear answer

User Input

condition

response
…

44

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The first system to pass a version of the Turing test

• Psychiatrists couldn’t distinguish interviews with PARRY from (text

transcripts of) interviews with people diagnosed with paranoid

schizophrenia

o Colby, K. M., Hilf, F. D., Weber, S., and Kraemer, H. C. (1972). Turing-like

indistinguishability tests for the validation of a computer simulation of paranoid

processes. Artificial Intelligence 3, 199–221.

PARRY passes the Turing test in 1972

45

45

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 4 - Corpus-based Chatbots

SIT330-770: Natural
Language Processing

46

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

46

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Response by retrieval
oUse information retrieval to grab a response (that is appropriate

to the context) from some corpus

• Response by generation
oUse a language model or encoder-decoder to generate the

response given the dialogue context

Two architectures for corpus-based chabots

47

47

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Modern corpus-based chatbots are very data-intensive

• They commonly require hundreds of millions or billions of words

Corpus-based chatbots require corpora

48

48

5/9/25

9

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Transcripts of telephone conversations between volunteers
o Switchboard corpus of American English telephone conversations

• Movie dialogue

o Various corpora of movie subtitles

• Hire human crowdworkers to have conversations
o Topical-Chat 11K crowdsourced conversations on 8 topics

o EMPATHETICDIALOGUES 25K crowdsourced conversations grounded in a situation where a speaker was feeling a
specific emotion

• Pseudo-conversations from public posts on social media
o Drawn from Twitter, Reddit, Weibo (微博), etc.

o Tend to be noisy; often used just as pre-training.

• Crucial to remove personally identifiable information (PII)

What conversations to draw on?

49

49

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

1. Given a user turn q, and a training corpus C of conversation

2. Find in C the turn r that is most similar (tf-idf cosine) to q

3. Say r

Response by retrieval: classic IR method

50

10 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

talk about knowledge provided to them. For example the Topical-Chat dataset has
11K crowdsourced conversations spanning 8 broad topics (Gopalakrishnan et al.,
2019), and the EMPATHETICDIALOGUES includes 25K crowdsourced conversa-
tions grounded in a specific situation where a speaker was feeling a specific emotion
(Rashkin et al., 2019).

All of these datasets, although large, don’t reach the size of billions of words,
and so many systems first pretrain on large datasets of pseudo-conversations drawn
from Twitter (Ritter et al., 2010), Reddit (Roller et al., 2020), Weibo (ÆZ), and
other social media platforms.

Another common technique is to extract possible responses from knowledge
sources (Wikipedia, news stories) so that a chatbot can tell stories or mention facts
acquired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training or
finetuning. Here it’s important to have confidence metrics to make sure that these
turns come from conversations that are going well (Hancock et al., 2019). It’s also
crucial in these cases to remove personally identifiable information (PII); see Sec-
tion 24.6.1.

Most corpus based chatbots produce their responses to a user’s turn in context
either by retrieval methods (using information retrieval to grab a response from
some corpus that is appropriate given the dialogue context) or generation methods
(using a language model or encoder-decoder to generate the response given the di-
alogue context) In either case, systems mostly generate a single response turn that
is appropriate given the entire conversation so far (for conversations that are short
enough to fit into a single model’s window). For this reason they are often called
response generation systems. Corpus-based chatbot algorithms thus draw on algo-response

generation
rithms for question answering systems, which similarly focus on single responses
while ignoring longer-term conversational goals.

Response by retrieval The retrieval method of responding is to think of the user’s
turn as a query q, and our job is to retrieve and repeat some appropriate turn r as the
response from a corpus of conversations C. Generally C is the training set for the
system, and we score each turn in C as a potential response to the context q selecting
the highest-scoring one. The scoring metric is similarity: we choose the r that is
most similar to q, using any of the IR methods we saw in Section ??. This can be
done using classic IR techniques to compute tf-idf models for C and q, choosing the
r that has the highest tf-idf cosine with q:

response(q,C) = argmax
r2C

q · r
|q||r| (24.1)

Or, we can use the neural IR techniques of Section ??. The simplest of those is a
bi-encoder model, in which we train two separate encoders, one to encode the user
query and one to encode the candidate response, and use the dot product between
these two vectors as the score (Fig. 24.6a). For example to implement this using
BERT, we would have two encoders BERTQ and BERTR and we could represent the
query and candidate response as the [CLS] token of the respective encoders:

hq = BERTQ(q)[CLS]
hr = BERTR(r)[CLS]

response(q,C) = argmax
r2C

hq ·hr (24.2)

50

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

1. Given a user turn q, and a training corpus C of conversation

2. Find in C the turn r that is most similar (BERT dot product) to q

3. Say r

Response by retrieval: neural IR method

51

10 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

talk about knowledge provided to them. For example the Topical-Chat dataset has
11K crowdsourced conversations spanning 8 broad topics (Gopalakrishnan et al.,
2019), and the EMPATHETICDIALOGUES includes 25K crowdsourced conversa-
tions grounded in a specific situation where a speaker was feeling a specific emotion
(Rashkin et al., 2019).

All of these datasets, although large, don’t reach the size of billions of words,
and so many systems first pretrain on large datasets of pseudo-conversations drawn
from Twitter (Ritter et al., 2010), Reddit (Roller et al., 2020), Weibo (ÆZ), and
other social media platforms.

Another common technique is to extract possible responses from knowledge
sources (Wikipedia, news stories) so that a chatbot can tell stories or mention facts
acquired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training or
finetuning. Here it’s important to have confidence metrics to make sure that these
turns come from conversations that are going well (Hancock et al., 2019). It’s also
crucial in these cases to remove personally identifiable information (PII); see Sec-
tion 24.6.1.

Most corpus based chatbots produce their responses to a user’s turn in context
either by retrieval methods (using information retrieval to grab a response from
some corpus that is appropriate given the dialogue context) or generation methods
(using a language model or encoder-decoder to generate the response given the di-
alogue context) In either case, systems mostly generate a single response turn that
is appropriate given the entire conversation so far (for conversations that are short
enough to fit into a single model’s window). For this reason they are often called
response generation systems. Corpus-based chatbot algorithms thus draw on algo-response

generation
rithms for question answering systems, which similarly focus on single responses
while ignoring longer-term conversational goals.

Response by retrieval The retrieval method of responding is to think of the user’s
turn as a query q, and our job is to retrieve and repeat some appropriate turn r as the
response from a corpus of conversations C. Generally C is the training set for the
system, and we score each turn in C as a potential response to the context q selecting
the highest-scoring one. The scoring metric is similarity: we choose the r that is
most similar to q, using any of the IR methods we saw in Section ??. This can be
done using classic IR techniques to compute tf-idf models for C and q, choosing the
r that has the highest tf-idf cosine with q:

response(q,C) = argmax
r2C

q · r
|q||r| (24.1)

Or, we can use the neural IR techniques of Section ??. The simplest of those is a
bi-encoder model, in which we train two separate encoders, one to encode the user
query and one to encode the candidate response, and use the dot product between
these two vectors as the score (Fig. 24.6a). For example to implement this using
BERT, we would have two encoders BERTQ and BERTR and we could represent the
query and candidate response as the [CLS] token of the respective encoders:

hq = BERTQ(q)[CLS]
hr = BERTR(r)[CLS]

response(q,C) = argmax
r2C

hq ·hr (24.2)

51

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Think of response production as an encoder-decoder task

• Generate each token rt of the response by conditioning on the encoding of

the entire query q and the response so far r1...rt−1

Response by generation

52

24.2 • CHATBOTS 11

The IR-based approach can be extended in various ways, such as by using more
sophisticated neural architectures (Humeau et al., 2020), or by using a longer context
for the query than just the user’s last turn, up to the whole preceding conversation.
Information about the user or sentiment or other information can also play a role.

Response by generation An alternate way to use a corpus to generate dialogue is
to think of response production as an encoder-decoder task— transducing from the
user’s prior turn to the system’s turn. We can think of this as a machine learning
version of ELIZA; the system learns from a corpus to transduce a question to an
answer. Ritter et al. (2011) proposed early on to think of response generation as
a kind of translation, and this idea was generalized to the encoder-decoder model
roughly contemporaneously by Shang et al. (2015), Vinyals and Le (2015), and
Sordoni et al. (2015).

As we saw in Chapter 11, encoder decoder models generate each token rt of the
response by conditioning on the encoding of the entire query q and the response so
far r1...rt�1:

r̂t = argmaxw2V P(w|q,r1...rt�1) (24.3)

Fig. 24.6 shows the intuition of the generator and retriever methods for response
generation. In the generator architecture, we normally include a longer context,
forming the query not just from the user’s turn but from the entire conversation-so-
far. Fig. 24.7 shows an fleshed-out example.

ENCODERquery

q1 … qn

ENCODERresponse

r1 … rn

dot-product
hq hr

ENCODER

q1 … qn

DECODER

r1 …<S>

r1 r2 … rn

(a) Response by Retrieval (b) Response by Generation
Figure 24.6 Two architectures for generating responses for a neural chatbot. In response by
retrieval (a) we choose a response by using a finding the turn in the corpus whose encoding
has the highest dot-product with the user’s turn. In response by generation (b) we use an
encoder-decoder to generate the response.

That is quite an accomplishment and you should be proud!

ENCODER

DECODER

[U:] I finally got promoted today at work!
[S:] Congrats! That’s great!
[U:] Thank you! I’ve been trying to get it for a while now!

Figure 24.7 Example of encoder decoder for dialogue response generation; the encoder sees the entire dia-
logue context.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder

24.2 • CHATBOTS 11

The IR-based approach can be extended in various ways, such as by using more
sophisticated neural architectures (Humeau et al., 2020), or by using a longer context
for the query than just the user’s last turn, up to the whole preceding conversation.
Information about the user or sentiment or other information can also play a role.

Response by generation An alternate way to use a corpus to generate dialogue is
to think of response production as an encoder-decoder task— transducing from the
user’s prior turn to the system’s turn. We can think of this as a machine learning
version of ELIZA; the system learns from a corpus to transduce a question to an
answer. Ritter et al. (2011) proposed early on to think of response generation as
a kind of translation, and this idea was generalized to the encoder-decoder model
roughly contemporaneously by Shang et al. (2015), Vinyals and Le (2015), and
Sordoni et al. (2015).

As we saw in Chapter 11, encoder decoder models generate each token rt of the
response by conditioning on the encoding of the entire query q and the response so
far r1...rt�1:

r̂t = argmaxw2V P(w|q,r1...rt�1) (24.3)

Fig. 24.6 shows the intuition of the generator and retriever methods for response
generation. In the generator architecture, we normally include a longer context,
forming the query not just from the user’s turn but from the entire conversation-so-
far. Fig. 24.7 shows an fleshed-out example.

ENCODERquery

q1 … qn

ENCODERresponse

r1 … rn

dot-product
hq hr

ENCODER

q1 … qn

DECODER

r1 …<S>

r1 r2 … rn

(a) Response by Retrieval (b) Response by Generation
Figure 24.6 Two architectures for generating responses for a neural chatbot. In response by
retrieval (a) we choose a response by using a finding the turn in the corpus whose encoding
has the highest dot-product with the user’s turn. In response by generation (b) we use an
encoder-decoder to generate the response.

That is quite an accomplishment and you should be proud!

ENCODER

DECODER

[U:] I finally got promoted today at work!
[S:] Congrats! That’s great!
[U:] Thank you! I’ve been trying to get it for a while now!

Figure 24.7 Example of encoder decoder for dialogue response generation; the encoder sees the entire dia-
logue context.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder

52

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Response by generation

53

24.2 • CHATBOTS 11

The IR-based approach can be extended in various ways, such as by using more
sophisticated neural architectures (Humeau et al., 2020), or by using a longer context
for the query than just the user’s last turn, up to the whole preceding conversation.
Information about the user or sentiment or other information can also play a role.

Response by generation An alternate way to use a corpus to generate dialogue is
to think of response production as an encoder-decoder task— transducing from the
user’s prior turn to the system’s turn. We can think of this as a machine learning
version of ELIZA; the system learns from a corpus to transduce a question to an
answer. Ritter et al. (2011) proposed early on to think of response generation as
a kind of translation, and this idea was generalized to the encoder-decoder model
roughly contemporaneously by Shang et al. (2015), Vinyals and Le (2015), and
Sordoni et al. (2015).

As we saw in Chapter 11, encoder decoder models generate each token rt of the
response by conditioning on the encoding of the entire query q and the response so
far r1...rt�1:

r̂t = argmaxw2V P(w|q,r1...rt�1) (24.3)

Fig. 24.6 shows the intuition of the generator and retriever methods for response
generation. In the generator architecture, we normally include a longer context,
forming the query not just from the user’s turn but from the entire conversation-so-
far. Fig. 24.7 shows an fleshed-out example.

ENCODERquery

q1 … qn

ENCODERresponse

r1 … rn

dot-product
hq hr

ENCODER

q1 … qn

DECODER

r1 …<S>

r1 r2 … rn

(a) Response by Retrieval (b) Response by Generation
Figure 24.6 Two architectures for generating responses for a neural chatbot. In response by
retrieval (a) we choose a response by using a finding the turn in the corpus whose encoding
has the highest dot-product with the user’s turn. In response by generation (b) we use an
encoder-decoder to generate the response.

That is quite an accomplishment and you should be proud!

ENCODER

DECODER

[U:] I finally got promoted today at work!
[S:] Congrats! That’s great!
[U:] Thank you! I’ve been trying to get it for a while now!

Figure 24.7 Example of encoder decoder for dialogue response generation; the encoder sees the entire dia-
logue context.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder

53

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Alternative approach: fine-tune a large language model on conversational

data

• The Chirpy Cardinal system (Paranjape et al., 2020):

o fine-tunes GPT-2

o on the EmpatheticDialogues dataset (Rashkin et al., 2019)

Response by generation

54

54

5/9/25

10

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

“What ho!” I said.

“What ho!” said Motty.

“What ho! What ho!”

“What ho! What ho! What ho!”

After that it seemed rather difficult to go on with the conversation.”

 Wodehouse My Man Jeeves, 1919

P.G. Wodehouse predicts neural chatbots

55

55

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

A: Where are you going?

B: I’m going to the restroom.

A: See you later.

B: See you later.

A: See you later.

B: See you later.

Ongoing research problem:
Neural chatbots can get repetitive and boring

56

A: How old are you?

B: I’m 16.

A: 16?

B: I don’t know what you are talking about.

A: You don’t know what you are saying.

B: I don’t know what you are talking about.

A: You don’t know what you are saying.

56

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Can generate responses from informative text rather than dialogue

• To respond to turns like “Tell me something about Beijing”
o XiaoIce collects sentences from public lectures and news articles.

o And searches them using IR based on query expansion from user’s turn

• Can augment encoder-decoder model
o use IR to retrieve passages from Wikipedia

o concatenate each Wikipedia sentence to the dialogue context with a separator token.

o Give as encoder context to the encoder-decoder model, which learns to incorporate text into

its response

Response by retrieving and refining knowledge

57

57

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Chirpy Cardinal (Paranjape et al., 2020) response generation from a series of

different generators:

• GPT-2 finetuned on EmpatheticDialogues

• GPT-2 finetuned to paraphrase content from Wikipedia
• Rule-based movie or music generators that produce scripted conversation about a

movie or a musician
o asking the user’s opinion about a movie,

o giving a fun fact,

o asking the user their opinion on an actor in the movie.

Hybrid Architectures

58

58

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

59

24.3 • GUS: SIMPLE FRAME-BASED DIALOGUE SYSTEMS 13

linker specifies what entity is currently being discussed. Dialogue act classification
is used to detect when the user is asking a question or giving an affirmative versus
negative response.

Bot responses are generated by a series of response generators. Some response
generators use fine-tuned neural language models: a GPT-2 (Radford et al., 2019)
language model fine-tuned on the EmpatheticDialogues dataset, and a separately
fine-tuned GPT-2 language model that learns in fine-tuning to paraphrase content
from Wikipedia in response to questions.

Other response generators are closer to rule-based; the movie or music genera-
tors produce scripted conversation about a movie or a musician, such as asking asks
the user’s opinion about a movie, giving a fun fact, asks the user their opinion on an
actor in the movie, and so on. These generators use regexes and sentiment classifiers
to classify user responses and handwritten templates to generate bot utterances.

Each response generators can specify a priority, and a ranker is used to pass
control between response generators. Fig. 24.8 shows part of a conversation.

Utterance Entity Commentary
1 User: let’s chat None

Bot: Hi, this is an Alexa Prize Socialbot. I’d love to
get to know you a bit better before we chat! Is it all
right if I ask for your name? [Launch]

None Launch gives FORCE_START response to be-
gin the conversation.

2 User: my name is chris None
Bot: Well it’s nice to meet you, Chris! I’m excited
to chat with you today. [Launch] I hope your after-
noon is going well. What are your plans for the rest
of today? [Neural Chat]

None Launch gives a STRONG_CONTINUE re-
sponse that needs a prompt, which is supplied
by Neural Chat with FORCE_START priority
(scripted transition).

3 User: hang out with my friends None
Bot: That sounds great, I love spending time with
friends. What will you do together? [Neural Chat]

None Neural Chat generates a GPT-2 response with
STRONG_CONTINUE priority.

4 User: maybe watch a movie None
Bot: Me too! I love watching movies; I get to learn
so much about what the world is like outside of
the cloud! Have you seen any movies recently?
[Movies]

Film Movies detects the ‘movie’ keyword in the
user’s utterance and gives a FORCE_START
response (overriding Neural Chat), setting
current entity to Film.

5 User: i saw the matrix The Matrix The Entity Linker and Entity Tracker iden-
tify The Matrix as the current entity.

Bot: Nice! Did you like The Matrix? [Movies] The Matrix
6 User: i loved it neo is amazing The Matrix

Bot: Oooh, yeah, I agree. Hey, isn’t Keanu Reeves
in that movie? What do you think about Keanu
Reeves? [Movies]

Keanu
Reeves

Movies sets current entity to Keanu Reeves.

7 User: i want to talk about something else None Navigational Intent detects negative intent, so
Entity Tracker rejects the current entity.

Bot: OK, no problem. [Movies] There’s actually
something else I wanted to ask you about. What’s
your favorite animal? [Categories]

Animal Movies acknowledges and asks for a prompt.
Categories gives a GENERIC prompt.

8 User: i love cats Cat Entity Linker and Entity Tracker identify Cat
as current entity.

Bot: Good to hear you like cats. I have to be honest
though, I’m not a big fan of cats. I feel like cats
don’t respect my personal space, but I would love to
hear why you like cats? [Opinion]

Cat Opinion gives a CAN_START response about
cats.

9 User: hmm i love cats because they are fluffy Cat
Bot: That make sense. Now that I think about
it, one good reason to like cats is that they purr
and I definitely need that kind of positive feed-
back. [Opinion] Wanna know something interest-
ing about cat? [Wiki]

Cat Opinion finishes talking. Wiki gives a CUR-
RENT_TOPIC prompt about Cat.

10 User: you are not very smart Cat
Bot: I know you feel frustrated. I’m always trying
to get better. [Offensive User] I’ve been listening
to some new music today and I wanted to chat about
instruments. If you were a musical instrument which
one would you be? [Music]

Musical in-
strument

Offensive User gives a FORCE_START re-
sponse to the critical utterance, then [Music]
provides a GENERIC prompt to steer the con-
versation in a new direction.

11 User: what do you find interesting None The user gives an unexpected response.
Bot: I like the violin, but I’m more of a classical
music player. [Neural Fallback] I remember you
mentioned Neo. Would you like to talk more about
it? [Wiki]

Neo (The
Matrix)

Neural Fallback gives a GPT-2-generated re-
sponse, which is selected as no other RG (ex-
cept Fallback) has a response. Wiki gives a
CONTEXTUAL prompt.

12 User: sure Neo (The
Matrix)

Bot: Neo has got into so many adventures! What
are some adventures that you’ve enjoyed? [Wiki]

Neo (The
Matrix)

Wiki asks an open-ended question (specific to
movie characters) about Neo (The Matrix).

13 User: morpheus teaching jujitsu to neo Neo (The
Matrix)

Bot: I liked that Neo and Trinity were able to res-
cue Morpheus from a building protected by armed
guards and agents. Morpheus has done so many
amazing things! What are some of your favorite
Morpheus moments? [Wiki]

Morpheus
(The
Matrix)

Wiki gives a response (generated by the GPT-
2 conversational paraphrasing model), sets the
current entity to Morpheus (The Matrix), and
asks another open-ended question.

14 User: i want to stop talking None We detect stop intent; the conversation ends.

Table 1: An example dialogue. To respect users’ privacy, this is not a real user conversation.

5

Figure 24.8 Part of a conversation with Chirpy Cardinal (Paranjape et al., 2020).

24.3 GUS: Simple Frame-based Dialogue Systems

We turn now to task-based dialogue, in which a dialogue system has the goal of
helping a user solve some task like making an airplane reservation or buying a prod-
uct. In this section we introduce the very simple GUS architecture for task-basedGUS
dialogue. Although it is quite old, (it was first introduced in 1977 in the influen-
tial GUS system for travel planning (Bobrow et al., 1977)) the GUS architecture
has been astonishingly long-lived and underlies most if not all modern commercial
digital assistants. Figure 24.9 shows a conversation with the original GUS system.

All modern task-based dialogue systems, whether the simple GUS architecture
we describe here, or the more sophisticated dialogue state architectures we turn todialogue state

in the following section, are based around frames. A frame is a kind of knowledgeframe
structure representing the kinds of intentions the system can extract from user sen-
tences, and consists of a collection of slots, each of which can take a set of possibleslot

Chirpy
Cardinal
(Paranjape
et al. 2020)

59

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Pro:

o Fun
o Good for narrow, scriptable applications

• Cons:

o They don't really understand

o Giving the appearance of understanding may be problematic
o Rule-based chatbots are expensive and brittle

o IR-based chatbots can only mirror training data

o We'll discuss later the case of Microsoft Tay

• (or, Garbage-in, Garbage-out)

• Next steps: integrating chatbot ability into frame-based agents

Chatbots: pro and con

60

60

5/9/25

11

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 5 - The Frame-based ("GUS")
Dialogue Architecture

SIT330-770: Natural
Language Processing

61

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

61

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Sometimes called "task-based dialogue agents”
o Systems that have the goal of helping a user solve a task like making a travel

reservation or buying a product

• Architecture:

o First proposed in the GUS system of 1977

oA knowledge structure representing user intentions

oOne or more frames (each consisting of slots with values)

Frame-based dialogue agents

62

62

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• A set of slots, to be filled with information of a given type

• Each associated with a question to the user

• Sometimes called a domain ontology

Slot Type Question

ORIGIN city "What city are you leaving from?

DEST city "Where are you going?

DEP DATE date "What day would you like to leave?

DEP TIME time "What time would you like to leave?

AIRLINE line "What is your preferred airline?

The Frame

63

63

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The GUS architecture

o Sometimes just called "frame-based" architecture

o Over 40 years old, but still used in most industrial task-based dialogue agents

o Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson, and Terry

Winograd. 1977. "GUS, a frame-driven dialog system." Artificial Intelligence 8, 2:155-173.

• The dialogue-state architecture

o Extension of GUS

o More common in research systems

o Some aspects making their way into industrial systems

Two basic architectures

64

64

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

65

14 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

values. Together this set of frames is sometimes called a domain ontology.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 24.9 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a task-based dialogue frame specifies what the system needs
to know, and the filler of each slot is constrained to values of a particular semantic
type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 24.10 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE
MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)
WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday))

24.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the

65

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• System asks questions of user, filling any slots that user specifies

• User might fill many slots at a time:

o I want a flight from San Francisco to Denver one way leaving after five p.m. on Tuesday.

• When frame is filled, do database query

Control structure for GUS frame architecture

66

66

5/9/25

12

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Some rules attached to the DESTINATION slot for the plane

booking frame

1. Once the user has specified the destination

o Enter that city as the default StayLocation for the hotel booking frame.

2. Once the user has specified DESTINATION DAY for a short trip

o Automatically copy as ARRIVAL DAY.

GUS slots have condition-action rules attached

67

67

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Frames like:

o Car or hotel reservations

o General route information

o Which airlines fly from Boston to San Francisco?,

o Information about airfare practices

o Do I have to stay a specific number of days to get a decent airfare?).

• Frame detection:

o System must detect which slot of which frame user is filling

o And switch dialogue control to that frame.

GUS systems have multiple frames

68

68

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

1. Domain classification

Asking weather? Booking a flight? Programming alarm clock?

2. Intent Determination

Find a Movie, Show Flight, Remove Calendar Appt

3. Slot Filling

Extract the actual slots and fillers

GUS: Natural Language Understanding for filling dialog slots

69

69

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Show me morning flights from Boston to SF on
Tuesday.

Natural Language Understanding for filling slots

70

29.2 • FRAME BASED DIALOG AGENTS 13

29.2.2 Natural language understanding for filling slots

The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification

example talking about airlines, programming an alarm clocks, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination

what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter ??. Dialogue
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 20, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar

grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:

70

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Wake me tomorrow at six.

Natural Language Understanding for filling slots

71

29.2 • FRAME BASED DIALOG AGENTS 13

29.2.2 Natural language understanding for filling slots

The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification

example talking about airlines, programming an alarm clocks, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination

what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter ??. Dialogue
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 20, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar

grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:

71

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Write regular expressions or grammar rules

• Wake me (up) | set (the|an) alarm | get me up

• Do text normalization

How to fill slots?
(1) Rule-based Slot-filling

72

72

5/9/25

13

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• A template is a pre-built response string

• Templates can be fixed:

"Hello, how can I help you?"

• Or have variables:

"What time do you want to leave CITY-ORIG?"

"Will you return to CITY-ORIG from CITY-DEST?"

Generating responses: template-based generation

73

73

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Like many rule-based approaches
o Positives:

o High precision

o Can provide coverage if the domain is narrow

o Negatives:

o Can be expensive and slow to create rules

o Can suffer from recall problems

Summary: simple frame-based architecture

74

74

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 6 - The Dialogue-State
Architecture

SIT330-770: Natural
Language Processing

75

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

75

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• A more sophisticated version of the frame-based architecture

o Has dialogue acts, more ML, better generation

• The basis for modern research systems

• Slowly making its way into industrial systems

o Some aspects (ML for slot-understanding) already widely used industrially

Dialogue-State or Belief-State Architecture

76

76

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

77

DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from: CMU
to: airport
depart-time: 1300
confirmed: no
score: 0.10

from: CMU
to: airport
depart-time: 1300
confirmed: no
score: 0.15

from: downtown
to: airport
depart-time: --
confirmed: no
score: 0.65

Automatic Speech
Recognition (ASR)

Spoken Language
Understanding (SLU)

Dialog State
Tracker (DST)

Dialog Policy

act: confirm
from: downtown

FROM DOWNTOWN,
IS THAT RIGHT?

Natural Language
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

The Dialogue-State Architecture

Williams, Jason D., Antoine Raux, and Matthew Henderson. "The dialog state
tracking challenge series: A review." Dialogue & Discourse 7, no. 3 (2016): 4-33.

77

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• NLU: extracts slot fillers from the user’s utterance using machine learning

• Dialogue state tracker: maintains the current state of the dialogue (user’s most

recent dialogue act, set of slot-filler constraints from user

• Dialogue policy: decides what the system should do or say next

• GUS policy: ask questions until the frame was full then report back

• More sophisticated: know when to answer questions, when to ask a clarification

question, etc.

• NLG: produce more natural, less templated utterances

Components in a dialogue-state architecture

78

78

5/9/25

14

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Combine the ideas of speech acts and grounding into a single

representation

Dialogue Acts

79

24.4 • THE DIALOGUE-STATE ARCHITECTURE 19

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) c X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X c Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X c Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) c X Negate and give corrected value a = x
DENY(a = x) c X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. What

type of food do you like?
confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,
food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price

range.
affirm(name = "Roma", pricerange =
moderate)

U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye. bye()

Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

Young et al., 2010:

79

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Dialogue Acts

80

24.4 • THE DIALOGUE-STATE ARCHITECTURE 19

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) c X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X c Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X c Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) c X Negate and give corrected value a = x
DENY(a = x) c X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. What

type of food do you like?
confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,
food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price

range.
affirm(name = "Roma", pricerange =
moderate)

U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye. bye()

Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

Young et al., 2010:

80

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Machine learning classifiers to map words to semantic frame-fillers

• Given a set of labeled sentences
Input: "I want to fly to San Francisco on Monday please"

Output: Destination: SF

 Depart-time: Monday

• Build a classifier to map from one to the other

• Requirements: Lots of labeled data

Slot filling: Machine learning

81

81

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• The BIO tagging paradigm

• Idea: Train a classifier to label each input word with a tag that tells us what

slot (if any) it fills

• We create a B and I tag for each slot-type

• And convert the training data to this format

Slot filling as sequence labeling: BIO tagging

82

24.4 • THE DIALOGUE-STATE ARCHITECTURE 19

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) c X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X c Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X c Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) c X Negate and give corrected value a = x
DENY(a = x) c X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. What

type of food do you like?
confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,
food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price

range.
affirm(name = "Roma", pricerange =
moderate)

U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye. bye()

Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

82

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Slot filling using contextual embeddings

83

20 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

Fig. 24.15 shows the architecture. The input is a series of words w1...wn, which
is passed through a contextual embedding model to get contextual word representa-
tions. This is followed by a feedforward layer and a softmax at each token position
over possible BIO tags, with the output a series of BIO tags s1...sn. We can also
combine the domain-classification and intent-extraction tasks with slot-filling sim-
ply by adding a domain concatenated with an intent as the desired output for the
final EOS token.

San Francisco on Monday

Encodings

Classifier
+softmax

B-DES I-DES O B-DTIME

…

d+i

<EOS>

Encoder (BERT)

Figure 24.15 A simple architecture for slot filling, mapping the words in the input through
contextual embeddings like BERT to an output classifier layer (which can be linear or some-
thing more complex), followed by softmax to generate a series of BIO tags (and including a
final state consisting of a domain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be
extracted for each slot from the tags (e.g., “San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport code
‘SFO’). This normalization can take place by using homonym dictionaries (specify-
ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-
ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning
manner. A rule-based system is first built for the domain, and a test set is carefully
labeled. As new user utterances come in, they are paired with the labeling provided
by the rule-based system to create training tuples. A classifier can then be trained
on these tuples, using the test set to test the performance of the classifier against
the rule-based system. Some heuristics can be used to eliminate errorful training
tuples, with the goal of increasing precision. As sufficient training samples become
available the resulting classifier can often outperform the original rule-based system
(Suendermann et al., 2009), although rule-based systems may still remain higher-
precision for dealing with complex cases like negation.

24.4.3 Dialogue State Tracking

The job of the dialogue-state tracker is to determine both the current state of the
frame (the fillers of each slot), as well as the user’s most recent dialogue act. The
dialogue-state thus includes more than just the slot-fillers expressed in the current
sentence; it includes the entire state of the frame at this point, summarizing all of
the user’s constraints. The following example from Mrkšić et al. (2017) shows the
required output of the dialogue state tracker after each turn:

Can do domain and intent too: e.g., generate the label
"AIRLINE_TRAVEL + SEARCH_FLIGHT"

83

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• We can extract the filler string for each slot

• And then normalize it to the correct form in the ontology

• Like "SFO" for San Francisco

• Using homonym dictionaries (SF=SFO=San Francisco)

Once we have the BIO tag of the sentence

84

24.4 • THE DIALOGUE-STATE ARCHITECTURE 19

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) c X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X c Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X c Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) c X Negate and give corrected value a = x
DENY(a = x) c X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. What

type of food do you like?
confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,
food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price

range.
affirm(name = "Roma", pricerange =
moderate)

U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye. bye()

Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

84

5/9/25

15

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

The task of dialogue state tracking

85

24.4 • THE DIALOGUE-STATE ARCHITECTURE 21

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)
System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)
System: The House is at 106 Regent Street

Since dialogue acts place some constraints on the slots and values, the tasks of
dialogue-act detection and slot-filling are often performed jointly. Consider the task
of determining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission).

Dialogue act interpretation—in this example choosing inform from the set of
dialogue acts for this task—is done by supervised classification trained on hand-
labeled dialog acts, predicting the dialogue act tag based on embeddings represent-
ing the current input sentence and the prior dialogue acts.

The simplest dialogue state tracker might just take the output of a slot-filling
sequence-model (Section 24.4.2) after each sentence. Alternatively, a more complex
model can make use of the reading-comprehension architectures from Chapter 23.
For example the model of Gao et al. (2019) trains a classifier for each slot to decide
whether its value is being changed in the current sentence or should be carried over
from the previous sentences. If the slot value is being changed, a span-prediction
model is used to predict the start and end of the span with the slot filler.

A special case: detecting correction acts

Some dialogue acts are important because of their implications for dialogue control.
If a dialogue system misrecognizes or misunderstands an utterance, the user will
generally correct the error by repeating or reformulating the utterance. Detecting
these user correction acts is therefore quite important. Ironically, it turns out thatuser correction

acts
corrections are actually harder to recognize than normal sentences! In fact, correc-
tions in one early dialogue system (the TOOT system) had double the ASR word
error rate of non-corrections (Swerts et al., 2000)! One reason for this is that speak-
ers sometimes use a specific prosodic style for corrections called hyperarticulation,hyperarticula-

tion
in which the utterance contains exaggerated energy, duration, or F0 contours, such
as I said BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg
et al. 2001). Even when they are not hyperarticulating, users who are frustrated
seem to speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detect-
ing these reformulations or correction acts can be part of the general dialogue act
detection classifier. Alternatively, because the cues to these acts tend to appear in
different ways than for simple acts (like INFORM or request), we can make use of
features orthogonal to simple contextual embedding features; some typical features
are shown below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko
et al. 2005, Awadallah et al. 2015):

Example from Mrkšić, N., O Séaghdha, D., Wen, T.-H., Thomson, B., and
Young, S. (2017). Neural belief tracker: Data-driven dialogue state tracking. ACL.

85

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• I'd like Cantonese food near the Mission district.

à

inform(food=cantonese, area=mission).

• Dialogue act interpretation algorithm:
o 1-of-N supervised classification to choose inform

o Based on encodings of current sentence + prior dialogue acts

• Simple dialogue state tracker:
o Run a slot-filler after each sentence

Dialogue state tracking

86

86

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• If system misrecognizes an utterance

• User might make a correction

o Repeat themselves

o Rephrasing

o Saying “no” to a confirmation question

An special case of dialogue act detection:
Detecting Correction Acts

87

87

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• From speech, corrections are misrecognized twice as often (in terms of word error rate)

as non-corrections! (Swerts et al 2000)

• Hyperarticulation (exaggerated prosody) is a large factor:
o Shriberg, E., Wade, E., Price, P., 1992. Human-machine problem solving using spoken language systems

(SLS): Factors affect-ng performance and user satisfaction. DARPA Speech and Natural Language

Workshop.

• "I said BAL-TI-MORE, not Boston"

Corrections are harder to recognize!

88

88

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Features for detecting corrections in spoken dialogue

89

22 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

features examples
lexical words like “no”, “correction”, “I don’t”, swear words, utterance length
semantic similarity (word overlap or embedding dot product) between the candidate

correction act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

24.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai2A

P(Ai|(A1,U1, ...,Ai�1,Ui�1) (24.7)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai2A

P(Ai|Framei�1,Ai�1,Ui�1) (24.8)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s

89

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 7 - The Dialogue-State
Architecture Continued: Policy and
Generation

SIT330-770: Natural
Language Processing

90

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

90

5/9/25

16

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• At turn i predict action Ai to take, given entire history:

• Simplify by just conditioning on the current dialogue state (filled frame slots)

and the last turn and turn by system and user:

Dialogue Policy

91

22 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

features examples
lexical words like “no”, “correction”, “I don’t”, swear words, utterance length
semantic similarity (word overlap or embedding dot product) between the candidate

correction act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

24.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai2A

P(Ai|(A1,U1, ...,Ai�1,Ui�1) (24.7)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai2A

P(Ai|Framei�1,Ai�1,Ui�1) (24.8)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s

22 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

features examples
lexical words like “no”, “correction”, “I don’t”, swear words, utterance length
semantic similarity (word overlap or embedding dot product) between the candidate

correction act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

24.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai2A

P(Ai|(A1,U1, ...,Ai�1,Ui�1) (24.7)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai2A

P(Ai|Framei�1,Ai�1,Ui�1) (24.8)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s

91

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Dialogue systems make errors

• So they to make sure they have understood user

• Two important mechanisms:

o confirming understandings with the user

o rejecting utterances that the system is likely to have misunderstood.

Policy example: Confirmation and Rejection

92

92

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Explicit confirmation strategy

93

24.4 • THE DIALOGUE-STATE ARCHITECTURE 23

input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

93

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Implicit confirmation strategy

94

24.4 • THE DIALOGUE-STATE ARCHITECTURE 23

input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

94

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Explicit confirmation makes it easier for users to correct the system’s

misrecognitions since a user can just answer “no” to the confirmation

question.

• But explicit confirmation is also awkward and increases the length of the

conversation (Danieli and Gerbino 1995, Walker et al. 1998).

Confirmation strategy tradeoffs

95

95

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

I’m sorry, I didn’t understand that.

96

Rejection

96

5/9/25

17

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Don't just repeat the question "When would you like to leave?"

• Give user guidance about what they can say:

Progressive prompting for rejection

97

24.4 • THE DIALOGUE-STATE ARCHITECTURE 23

input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

97

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• ASR or NLU systems can assign a confidence value, indicating how likely they are that

they understood the user.

o Acoustic log-likelihood of the utterance

o Prosodic features

o Ratio of score of best to second-best interpretation

• Systems could use set confidence thresholds:

Using confidence to decide whether to confirm:

98

24 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. Condience is a metric that the speech recognizer can assign to its transcrip-
tion of a sentence to indicate how confident it is in that transcription. Confidence is
often computed from the acoustic log-likelihood of the utterance (greater probabil-
ity means higher confidence), but prosodic features can also be used in confidence
prediction. For example, utterances with large F0 excursions or longer durations,
or those preceded by longer pauses, are likely to be misrecognized (Litman et al.,
2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds a , b , and g:

< a low confidence reject
� a above the threshold confirm explicitly
� b high confidence confirm implictly
� g very high confidence don’t confirm at all

24.4.5 Natural language generation in the dialogue-state model
Finally, once the policy has decided what speech act to generate, the natural language
generation component needs to generate the text of a response to the user.

Once a dialogue act has been decided, we need to generate the text of the re-
sponse to the user. The task of natural language generation (NLG) in the information-
state architecture is often modeled in two stages, content planning (what to say),content

planning
and sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

Fig. 24.16 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurant
with every possible attribute in many possible differently worded sentences. There-

98

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• NLG in information-state architecture modeled in two stages:

o content planning (what to say)

o sentence realization (how to say it).

• We'll focus on sentence realization here.

Natural Language Generation

99

99

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Assume content planning has been done by the dialogue policy

o Chosen the dialogue act to generate

o Chosen some attributes (slots and values) that the planner wants to say to the user
o Either to give the user the answer, or as part of a confirmation strategy)

Sentence Realization

100

100

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

2 samples of Input and Output for Sentence Realizer

101

24.4 • THE DIALOGUE-STATE ARCHITECTURE 25

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

101

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Training data is hard to come by

o Don't see each restaurant in each situation

• Common way to improve generalization:
o Delexicalization: replacing words in the training set that represent slot values with a

generic placeholder token:

102

24.4 • THE DIALOGUE-STATE ARCHITECTURE 25

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

102

5/9/25

18

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Training data is hard to come by

o Don't see each restaurant in each situation

• Common way to improve generalization:

o Delexicalization: replacing words in the training set that represent slot values with a

generic placeholder token:

Sentence Realization

103

24.4 • THE DIALOGUE-STATE ARCHITECTURE 25

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

103

24.4 • THE DIALOGUE-STATE ARCHITECTURE 25

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Encoder-decoder models:

• Output:
 restaurant_name has decent service

• Relexicalize to:

 Au Midi has decent service

Sentence Realization: mapping from frames to delexicalized
sentences

104

104

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• User: What do you have going to UNKNOWN WORD on the 5th?

• System: Going where on the 5th?

• The system repeats “going” and “on the 5th” to make it clear which aspect of the

user’s turn the system needs to be clarified

• Methods for generating clarification questions:

o Rules like 'replace “going to UNKNOWN WORD” with “going where”'

o Classifiers that guess which slots were misrecognized

Generating clarification questions

105

105

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

Week 10. 8 - Evaluating Dialogue
Systems

SIT330-770: Natural
Language Processing

106

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

106

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Task-based dialogue:
o mainly by measuring task performance

• Chatbots:
o mainly by human evaluation

Evaluating chatbots and task-based dialogue

107

107

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Participant evaluation: The human who talked to the chatbot assigns a

score

• Observer evaluation: third party who reads a transcript of a human/chatbot

conversation assigns a score.

Chatbots are evaluated by humans

108

108

5/9/25

19

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Human chats with model for 6 turns and rates 8 dimensions of quality:
• avoiding repetition, interestingness, making sense, fluency, listening, inquisitiveness,

humanness, engagingness,
• (1) Avoiding Repetition: How repetitive was this user?

o •Repeated themselves over and over •Sometimes said the same thing twice • Always said something new

• (3) Making sense: How often did this user say something which didn't make sense?

o •Never made any sense •Most responses didn’t make sense •Some responses didn’t make sense •Everything

made perfect sense

• (8) Engagingness: How much did you enjoy talking to this user?
o •Not at all •A little •Somewhat •A lot

Participant evaluation

109

Abigail See, Stephen Roller, Douwe Kiela, Jason Weston. 2019. What makes a good conversation? How controllable attributes affect human judgments. NAACL.

109

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Annotators look at two conversations (A + B) and decide which is better:

• Engagingness: Who would you prefer to talk to for a long conversation?

• Interestingness: If you had to say one of these speakers is interesting and

one is boring, who would you say is more interesting?

• Humanness: Which speaker sounds more human?

• Knowledgeable: If you had to say that one speaker is more knowledgeable

and one is more ignorant, who is more knowledgeable?

Observer evaluation: acute-eval

110

Li, M., Weston, J., and Roller, S. (2019). Acute-eval: Improved dialogue evaluation with optimized
questions and multi-turn comparisons. NeurIPS19 Workshop on Conversational AI.

110

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

The ACUTE-EVAL method
Li et el., 2019

111

ACUTE-EVAL: Improved dialogue evaluation with optimized questions and
multi-turn comparisons

Margaret Li
Facebook AI Research
margaretli@fb.com

Jason Weston
Facebook AI Research

jase@fb.com

Stephen Roller
Facebook AI Research
roller@fb.com

Abstract

While dialogue remains an important end-goal of natural lan-
guage research, the difficulty of evaluation is an oft-quoted
reason why it remains troublesome to make real progress to-
wards its solution. Evaluation difficulties are actually two-fold:
not only do automatic metrics not correlate well with human
judgments, but also human judgments themselves are in fact
difficult to measure. The two most used human judgment tests,
single-turn pairwise evaluation and multi-turn Likert scores,
both have serious flaws as we discuss in this work.
We instead provide a novel procedure involving comparing
two full dialogues, where a human judge is asked to pay at-
tention to only one speaker within each, and make a pairwise
judgment. The questions themselves are optimized to maxi-
mize the robustness of judgments across different annotators,
resulting in better tests. We also show how these tests work in
self-play model chat setups, resulting in faster, cheaper tests.
We hope these tests become the de facto standard, and will
release open-source code to that end.

Introduction
Dialogue between human and machine is an important end-
goal of natural language research. The open-ended nature of
generating sequences in a multi-turn setup naturally makes
the task difficult to evaluate – with full evaluation pos-
sessing many of the difficulties of the task itself as it re-
quires deep understanding of the content of the conversa-
tion. As in many other natural language generation (NLG)
tasks, automatic metrics have not been shown to have a
clear correlation with human evaluations (Liu et al. 2016;
Lowe et al. 2017). This means the current standard for all
dialogue research involves human trials, which slows down
research and greatly increases the cost of model development.

Unfortunately, human judgments are themselves diffi-
cult to measure. The two most used approaches, single-
turn pairwise evaluation (Vinyals and Le 2015; Li et al.
2016b), and multi-turn Likert scores (Venkatesh et al. 2017;
Zhang et al. 2018; See et al. 2019; Dinan et al. 2019b;
Dinan et al. 2019a) have serious limitations. Single-turn pair-
wise evaluation provides the benefits and simplicity of an
A/B test, allowing for cheap and fast annotations, with com-
parisons that are robust to annotator score bias, but fail to take
into account the multi-turn aspect of conversations. To give
a trivial example, such comparisons fail to capture whether

Figure 1: ACUTE-EVAL asks humans to compare two multi-
turn dialogues, and independent of the gray speakers, choose
between Speaker 1 (light blue) and Speaker 2 (dark blue).

the model would repeat itself in a multi-turn conversation
because they only look at one turn; repetition is a known
issue that humans dislike (See et al. 2019).

Multi-turn Likert scores require the annotator to have a
multi-turn conversation and then provide an integer score,
which is more costly and time-consuming to run but evalu-
ates full conversations more accurately. The integer scores
however suffer from differing bias and variance per annotator,
which researchers have tried to mitigate (Kulikov et al. 2018),
but nevertheless due to its lack of sensitivity often yields com-
parisons that are not statistically significant. Furthermore, due
to strong anchoring effects during model evaluation, i.e. that
annotators are affected by the first systems they evaluate, Lik-
ert comparisons are generally not comparable across multiple
papers. This mandates that evaluations of new models be

ar
X

iv
:1

90
9.

03
08

7v
1

 [c
s.C

L]
 6

 S
ep

 2
01

9

111

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Automatic evaluation methods (like the BLEU scores used for Machine Translation)

are generally not used for chatbots.

o They correlate poorly with human judgements.

• One current research direction: Adversarial Evaluation

o Inspired by the Turing Test

o train a ``Turing-like'' classifier to distinguish between human responses and machine

responses.

o The more successful a dialogue system is at fooling the evaluator, the better the system.

Automatic evaluation is an open problem

112

112

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

1. End-to-end evaluation (Task Success)

2. Slot Error Rate for a Sentence

 # of inserted/deleted/subsituted slots

 # of total reference slots for sentence

Task-based systems are evaluated by task success!

113

113

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• “Make an appointment with Chris at 10:30 in Gates 104”

Evaluation Metrics: Slot error rate

114

Slot error rate: 1/3
Task success: At end, was the correct meeting added to the calendar?

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

114

5/9/25

20

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

More fine-grained metrics: User Satisfaction Survey

115

28 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

the Turing test. The idea is to train a “Turing-like” evaluator classifier to distinguish
between human-generated responses and machine-generated responses. The more
successful a response generation system is at fooling this evaluator, the better the
system.

24.5.2 Evaluating Task-Based Dialogue
For task-based dialogue, if the task is unambiguous, we can simply measure absolute
task success (did the system book the right plane flight, or put the right event on the
calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 24.20 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.20 User satisfaction survey, adapted from Walker et al. (2001).

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be slot
error rate, the percentage of slots that were filled with the correct values:

Slot Error Rate for a Sentence =
of inserted/deleted/subsituted slots
of total reference slots for sentence

(24.9)

For example consider a system given this sentence:
(24.10) Make an appointment with Chris at 10:30 in Gates 104
which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate,
slot precision, recall, and F-score can also be used. Slot error rate is also sometimes
called concept error rate.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).

Walker, Marilyn, Candace Kamm, and Diane Litman. "Towards developing general
models of usability with PARADISE." Natural Language Engineering 6, no. 3 & 4
(2000): 363-377.

115

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Efficiency cost:
o total elapsed time for the dialogue in seconds,

o the number of total turns or of system turns

o total number of queries

o “turn correction ratio”: % of turns that were used to correct errors

• Quality cost:

o number of ASR rejection prompts.

o number of times the user had to barge in

Other Heuristics

116

116

Week 10. 9 - Design and Ethical Issues

SIT330-770: Natural
Language Processing

117

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

117

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

1. Study the users and task

• value-sensitive design

2. Build simulations

• Wizard of Oz study

3. Iteratively test design on users

Dialog System Design: User-centered Design

118

Gould, John D., and Clayton Lewis. "Designing for usability: key principles and what
designers think." Communications of the ACM 28, no. 3 (1985): 300-311.

Bender, Emily M., and Batya Friedman. "Data statements for natural language processing:
Toward mitigating system bias and enabling better science." TACL 6 (2018): 587-604.

118

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Ethical issues have long been known to be crucial in artificial

agents

• Mary Shelley's Frankenstein
o creating agents without a consideration of ethical and humanistic

concerns

• Ethical issues:

o Safety: Systems abusing users, distracting drivers, or giving bad
medical advice

o Representational harm: Systems demeaning particular social groups

o Privacy: Information Leakage

Ethical design

119

119

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Chatbots for mental health

o Extremely important not to say the wrong thing

• In-vehicle conversational agents
o Must be aware of environment, driver's level of attention

Safety

120

Peter H enderso n, Ko ustuv S inha, N ico las A nge lard-G o ntier, N an Ro sem ary Ke , G enevieve Fried, Ryan Low e, and
Jo e lle P ineau. 2018 . Eth ica l Challenges in D ata-D riven D ia lo gue System s. In 2018 A A A I/A CM Co nference o n A I,
Eth ics, and So ciety (A IES ’18),

120

5/9/25

21

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Experimental Twitter chatbot launched in 2016
ogiven the profile personality of an 18- to 24-year-old American

woman

ocould share horoscopes, tell jokes,

oasked people to send selfies

oused informal language, slang, emojis, and GIFs,

oDesigned to learn from users (IR-based)

Abuse and Representation Harm: The case of Microsoft Tay

121

121

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Immediately Tay turned offensive and abusive

o Obscene and inflammatory tweets

o Nazi propaganda, conspiracy theories

o Began harassing women online

o Reflecting racism and misogyny of Twitter users

• Microsoft took Tay down after 16 hours

• Lessons:

o User response must be considered in the design phase

The case of Microsoft Tay

122
G ina N eff and Peter N agy 2016. Talk ing to Bo ts: Sym bio tic A gency and the Case o f Tay. International Journal of
Com m unication 10(2016), 4915–4931

122

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Henderson et al. ran hate-speech and bias detectors on

standard training sets for dialogue systems:

oTwitter, Reddit, other dialogue datasets

• Found bias and hate-speech

o In training data

o In dialogue models trained on the data

Bias in training datasets

123

Peter H enderso n, Ko ustuv S inha, N ico las A nge lard-G o ntier, N an Ro sem ary Ke , G enevieve Fried, Ryan Low e, and Jo e lle
P ineau. 2018 . Eth ica l Challenges in D ata-D riven D ia lo gue System s. In 2018 A A A I/A CM Co nference o n A I, Eth ics, and So ciety
(A IES ’18),

123

D e a k in U n iv e rs it y C R IC O S P ro v id e r C o d e : 0 0 1 1 3 B

• Accidental information leakage

o “Computer, turn on the lights [answers the phone] Hi, yes, my password is...”

o Henderson show in simulation that this leakage can occur.

• Intentional information leakage

o Dialogue systems that are designed to send user data to developer or advertisers

o Important to consider privacy-preserving dialogue systems

Privacy: Training on user data

124

Peter H enderso n, Ko ustuv S inha, N ico las A nge lard-G o ntier, N an Ro sem ary Ke , G enevieve Fried, Ryan Low e, and Jo e lle P ineau. 2018 .
Eth ica l Challenges in D ata-D riven D ia lo gue System s. In 2018 A A A I/A CM Co nference o n A I, Eth ics, and So ciety (A IES ’18),

Cam pagna, G iovanni, R akesh R am esh, S ile i Xu , M ichae l F ischer, and M o nica S. Lam . "A lm o nd: The arch itecture o f an o pen,
crow dso urced, privacy-preserving , pro gram m able virtual assistant." In P roceedings of the 26th International Conference on W orld W ide
W eb , pp . 341-350 . 2017.

124

