

Conversational Agents
(AKA Dialogue Systems AKA Dialogue Agents AKA Chatbots)

Personal Assistants on phones or other devices

SIRI, Alexa, Cortana, Google Assistant

Playing music, setting timers and clocks

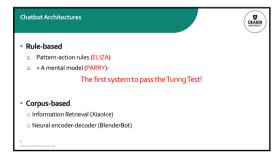
Chatting for fun

Booking travel reservations

Clinical uses for mental health

3

1 2



Will you sing me a song?

Sure, what do you want to be sung to? It can sing you a song about baking

Ves, sing me a song about baking!

(bo you want me to sing it to the tune of "Sing Along with Mitch?")

Ves, I would love that.

(Cit. If by to get it to you by the end of the day. What elike do you like to do?)

No, sing it to me now!

(Cit. give me a few days. I'm a teacher, so I don't have much free lime.

Can you at least tell me what the hyrics are?

Sure, it goes like this. "Baking is my favorite thing to do in the world."

BlenderBot

(Roller et al., 2020)

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!

Wow, sounds like a bop.

4 5

The Frame

• A set of slots, to be filled with information of a given type
• Each associated with a question to the user

Slot Type Question

ORIGIN city "What city are you leaving from?

DEST city "Where are you going?

DEP DATE date "What day would you like to leave?

DEP TIME time "What time would you like to leave?

AIRLINE line "What is your preferred airline?",

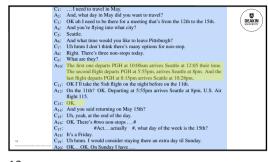
7 8 9

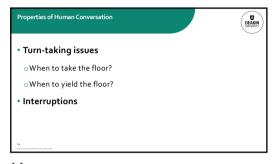
Turns

We call each contribution a "turn"

As if conversation was the kind of game where everyone takes turns.

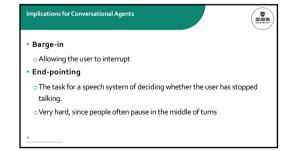
10 11 12





C;: ...1 need to travel in May.
A;: And, what day in May did you want to travel?
C;: OK uh 1 need to be there for a meeting that's from the 12th to the 15th.
Ai: And your Highing thow Mast city?
C;: Seattle.
A;: And what time would you like to leave Pittsburgh?
C;: Uh hmm I don't think there's many options for non-stop.
Aj: Right. There's three non-tospts today.
C;: What are they?
Air: The first one departs PCH at 1500 than arrives Seattle at 12:05 their time.
The second highest PCH at 1500 than arrives Seattle at 12:05 their time.
The second highest PCH at 1500 the night before on the 10th.
Aj: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air light 15;
Ci;: OK II lack the 5th highest on the night before on the 10th.
Aj: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air light 15;
Ci;: Uh, yeah, at the end of the day.
Air: OK. There's three onn-stops...#
Cj;: Uh, seah, at the end of the day.
Air: OK. There's three onn-stops...#
Cj;: Uh himm. I would consider stujing there an extra day til Sunday.
Air: OK. OK. OK. Shalled Libon.

13 14 15





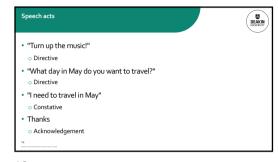
Constatives: committing the speaker to something's being the case (answering, claiming, confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, asking, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning, vowing, betting, opposing)

Acknowledgments: express the speaker's attitude regarding the hearer with respect to some social action (apologizing, greeting, thanking, accepting an acknowledgment)

16 17 18

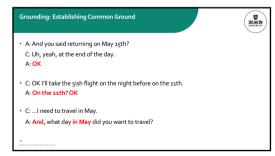


Participants in conversation or any joint activity need to establish common ground.
Principle of closure. Agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it (Clark 1996, after Norman 1988)
Speech is an action too! So speakers need to ground each other's utterances.
Grounding: acknowledging that the hearer has understood

• Grounding is relevant for human-machine interaction
• Why do elevator buttons light up?

21

19 20



System: Did you want to review some more of your profile?

User: No.
System: Did you want to review some more of your profile?

System: Did you want to review some more of your profile?
User: No.
System: Okay, what's next?

System: Okay, what's next?

Local structure between adjacent speech acts, from the field of conversational analysis (Sacks et al. 1974)

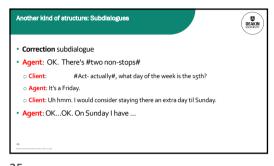
Called adjacency pairs:

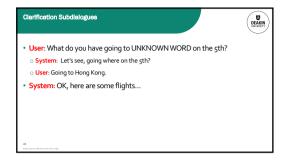
Ouestion... Answer

Proposal... Acceptance/Rejection

Compliments ("Nice jacket!")... Downplayer ("Oh, this old thing?")

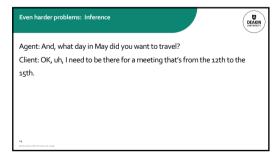
22 23 24







25 26



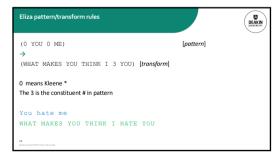
28 29 30

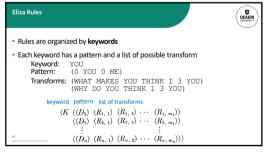
Draw the patient out by reflecting patient's statements back at them
 Rare type of conversation in which one can "assume the pose of knowing almost nothing of the real world"

Patient: "I went for a long boat ride"
Psychologist: "Tell me about boats"

• You don't assume she didn't know what a boat is
• You assume she had some conversational goal
• Chatbots trying to pass the Turing test usually choose some such domain

32 33





Weywords are ranked from specific to general

User: I know everybody laughed at me
""" is very general:

1: (1'') -> (YOU SAY YOU 2)

ELIZA: YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

"Everybody" is more specific and interesting

Everybody" (Everybody *) -> (WHO IN PARTICULAR ARE YOU THINKING OF)

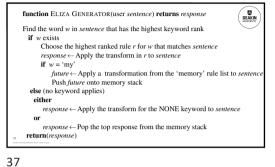
ELIZA: WHO IN PARTICULAR ARE YOU THINKING OF)

Implementation: keywords stored with their rank

Everybody 5 (list of transformation rules)

I 0 (list of transformation rules)

34 35 36



(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3) · (0 MY 0 = EARLIER YOU SAID YOUR 3) * (0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3)) Whenever "MY" is highest keyword o Randomly select a transform on the MEMORY list Apply to sentence o Store on a (first-in-first-out) queue Later, if no keyword matches a sentence o Return the top of the MEMORY queue instead

39

38

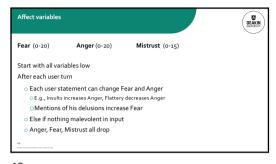
Ethical implications: Anthropomorphism and Privacy DEAKIN · People became deeply emotionally involved with the program • One of Weizenbaum's staff asked him to leave the room when she talked with ELIZA When he suggested that he might want to store all the ELIZA conversations for later analysis, people immediately pointed out the privacy implications o Suggesting that they were having quite private conversations with ELIZA o Despite knowing that it was just software.

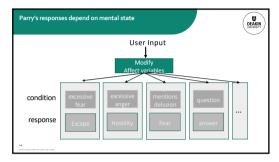
DEAKIN UNIVERSITY • It worried Weizenbaum that people confided in ELIZA · Were people misled about how much computers understood? Turkle studied users of ELIZA and other systems Turkle has shown human face-to-face interaction is vital But people also develop specific relationships with artifacts Some users told her ELIZA was more like a kind of diary, a way to privately explore their thoughts. • Importance of value-sensitive design

PARRY: A computational model of schizophrenia DEAKIN UNIVERSITY Another chatbot with a clinical psychology focus o Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial paranoia. Artificial Intelligence 2(1), 1–25. · Used to study schizophrenia · Same pattern-response structure as Eliza But a much richer: o control structure o language understanding capabilities o model of mental state. o variables modeling levels of Anger, Fear, Mistrust

40 41 42

Ethical implications





PARRY passes the Turing test in 1972

The first system to pass a version of the Turing test

Psychiatrists couldn't distinguish interviews with PARRY from (text transcripts of) interviews with people diagnosed with paranoid schizophrenia

Colby, K. M., Hilf, F. D., Weber, S., and Kraemer, H. C. (1972). Turing-like indistinguishability tests for the validation of a computer simulation of paranoid processes. Artificial Intelligence 3, 199–221.

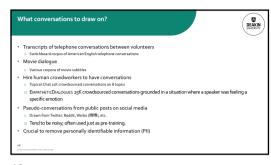
45

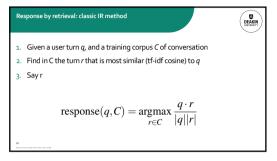
43 44

Response by retrieval
 Use information retrieval to grab a response (that is appropriate to the context) from some corpus
 Response by generation
 Use a language model or encoder-decoder to generate the response given the dialogue context

Modern corpus-based chatbots are very data-intensive
 They commonly require hundreds of millions or billions of words

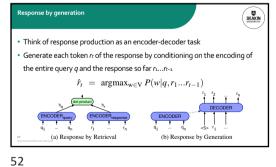
46 47 48

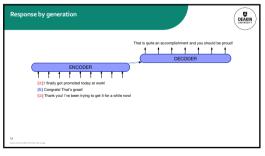


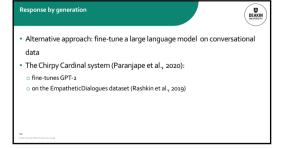


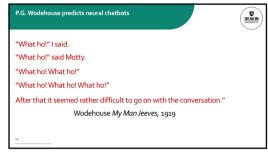
Response by retrieval: neural IR method $\begin{array}{ll} & & \\$

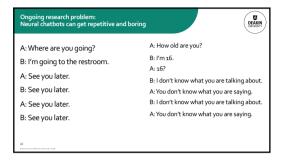
49 50 51







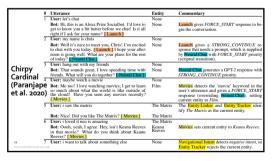




Can generate responses from informative text rather than dialogue
To respond to turns like "Tell me something about Beijing"
Xisoice collects sentences from public lectures and news articles.
And searches them using IR based on query expansion from user's turn
Can augment encoder-decoder model
use IR to retrieve passages from Wikipedia
concatenate each Wikipedia sentence to the dialogue context with a separator token.
Give as encoder context to the encoder-decoder model, which learns to incorporate text into lits response

55 56 57

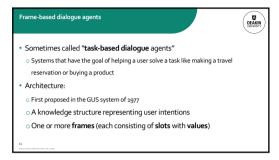
	ONTES
• Ch	irpy Cardinal (Paranjape et al., 2020) response generation from a series of
diff	ferent generators:
• GP	T-2 finetuned on EmpatheticDialogues
• GP	T-2 finetuned to paraphrase content from Wikipedia
• Ru	le-based movie or music generators that produce scripted conversation about
mo	ovie or a musician
0	asking the user's opinion about a movie,
0	giving a fun fact,
0	asking the user their opinion on an actor in the movie.



Chatbots: pro and con

Pro:
Fun
Good for narrow, scriptable applications
Cons:
They don't really understand
Giving the appearance of understanding may be problematic
Rule-based chatbots are expensive and brittle
Well discurs later the case of Microsoft Tay
(or, Garbage-in, Garbage-out)
Next steps: integrating chatbot ability into frame-based agents

58 59 60



The Frame

A set of slots, to be filled with information of a given type

E ach associated with a question to the user

Sometimes called a domain ontology

Slot Type Question

ORIGIN city "What city are you leaving from?

DEST city "Where are you going?

DEP DATE date "What day would you like to leave?

DEP TIME time "What time would you like to leave?

AIRLINE line "What is your preferred airline?

61 62 63

Two basic architecture

The GUS architecture

Sometimes just called "frame-based" architecture

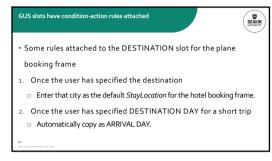
Over 40 years old, but still used in most industrial task-based dialogue agents
Bobrow, Daniel G, Ronald M Kaplan, Martin Kay, Donald A Norman, Henry Thompson, and Terry Winograd. 1977. "GUS, a frame-driven dialog system." Artificial Intelligence 8, 2:155-173.

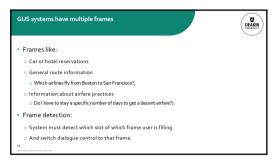
The dialogue-state architecture
Extension of GUS
More common in research systems
Some aspects making their way into industrial systems

DEAKIN UNIVERSITY want to go? I want to go to San Diego on May 28 What time do you want to leave? I must be in San Diego before 10 am GUS: Client: GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am? What is the next flight? Air California flight 310 that leaves at 8.30am and arrives at 10.00am Client: GUS: I'll take the first one In what name should I make a reservation, please? Dan Bobrow I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am. GUS: What date do you want to return on ? Client: GUS: Client: GUS: On Friday in the evening. Would you like the flight that leaves at 7.45 pm? That's fine I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you for calling, Goodbye

System asks questions of user, filling any slots that user specifies
 User might fill many slots at a time:
 I want a flight from San Francisco to Denver one way leaving after five p.m. on Tuesday.
 When frame is filled, do database query

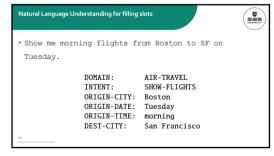
64 65

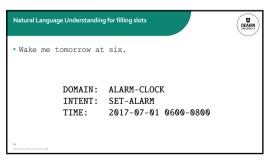


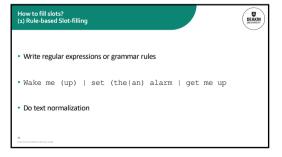


1. Domain classification
Asking weather? Booking a flight? Programming alarm clock?
2. Intent Determination
Find a Movie, Show Flight, Remove Calendar Appt
3. Slot Filling
Extract the actual slots and fillers

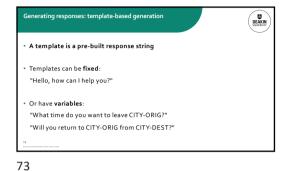
67 68 69

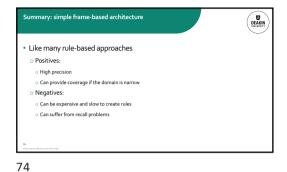






70 71 72

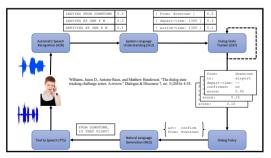




/3

A more sophisticated version of the frame-based architecture
 Has dialogue acts, more ML, better generation
 The basis for modern research systems
 Slowly making its way into industrial systems
 Some aspects (ML for slot-understanding) already widely used industrially

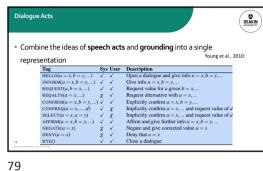
76

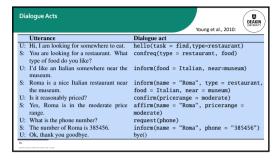


NLU: extracts slot fillers from the user's utterance using machine learning
Dialogue state tracker: maintains the current state of the dialogue (user's most recent dialogue act, set of slot-filler constraints from user
Dialogue policy: decides what the system should do or say next
GUS policy: ask questions until the frame was full then report back
More sophisticated: know when to answer questions, when to ask a clarification question, etc.

NLG: produce more natural, less templated utterances

77 78





81

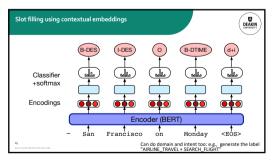
80

The BIO tagging paradigm

Idea: Train a classifier to label each input word with a tag that tells us what slot (if any) it fills

O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

We create a B and I tag for each slot-type
And convert the training data to this format

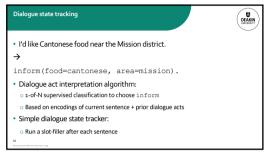


Once we have the BIO tag of the sentence

0 0 0 0 0 B-DES I-DES 0 B-DEFTIME I-DEPTIME 0
I want to fly to San Francisco on Monday afternoon please

• We can extract the filler string for each slot
• And then normalize it to the correct form in the ontology
• Like "SFO" for San Francisco
• Using homonym dictionaries (SF=SFO=San Francisco)

82 83 84



An special case of dialogue act detection:

Detecting Correction Acts

• If system misrecognizes an utterance

• User might make a correction

• Repeat themselves

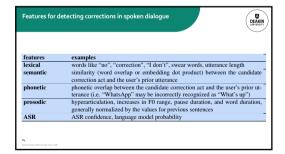
• Rephrasing

• Saying "no" to a confirmation question

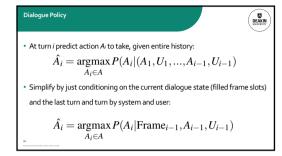
85 86 87

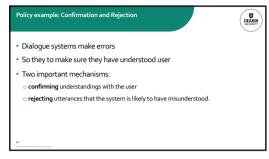
From speech, corrections are misrecognized twice as often (in terms of word error rate) as non-corrections! (Swerts et al 2000)
 Hyperarticulation (exaggerated prosody) is a large factor:
 Shriberg, E., Wade, E., Price, P., 1992. Human-machine problem solving using spoken language systems (SLS) Factors affect-ng performance and user satisfaction. DARPA Speech and Natural Language Workshop.

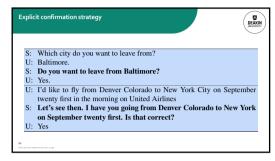
"I said BAL-TI-MORE, not Boston"



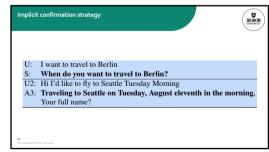
88 89 90





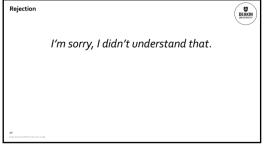


91 92 93

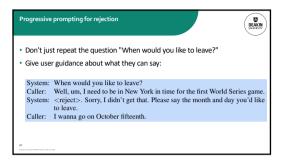


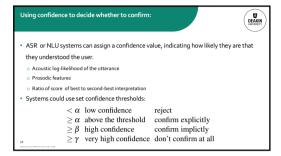
Explicit confirmation makes it easier for users to correct the system's misrecognitions since a user can just answer "no" to the confirmation question.

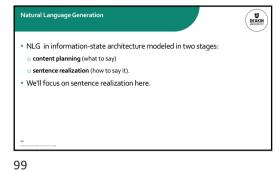
 But explicit confirmation is also awkward and increases the length of the conversation (Danieli and Gerbino 1995, Walker et al. 1998).



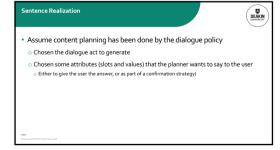
94 95 96

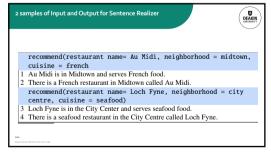






97 98





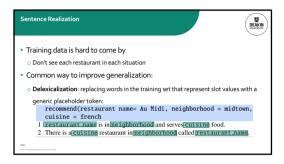
Training data is hard to come by
Don't see each restaurant in each situation

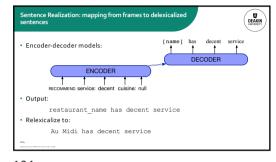
Common way to improve generalization:
Delexicalization: replacing words in the training set that represent slot values with a generic placeholder token:

recommend(restaurant name= Au Midi, neighborhood = midtown, cuisine = french

Au Midi is in Midtown and serves French food.
There is a French restaurant in Midtown called Au Midi.

100 101 102





User: What do you have going to UNKNOWN WORD on the 5th?

User: What do you have going to UNKNOWN WORD on the 5th?

The system: Going where on the 5th?

The system repeats "going" and "on the 5th" to make it clear which aspect of the user's turn the system needs to be clarified

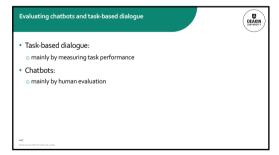
Methods for generating clarification questions:

Rules like 'replace "going to UNKNOWN WORD" with "going where"

Classifiers that guess which slots were misrecognized

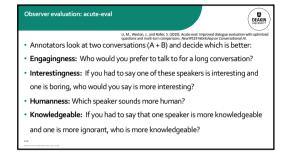
105

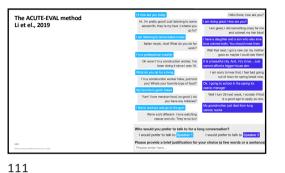
103 104



Participant evaluation: The human who talked to the chatbot assigns a score
 Observer evaluation: third party who reads a transcript of a human/chatbot conversation assigns a score.

106 107 108





109 110

Automatic evaluation is an open problem

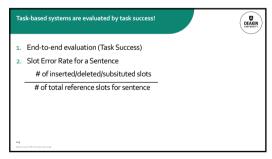
Automatic evaluation methods (like the BLEU scores used for Machine Translation) are generally not used for chatbots.

They correlate poorly with human judgements.

One current research direction: Adversarial Evaluation

Inspired by the Turing Test train a "Turing-like" classifier to distinguish between human responses and machine responses.

The more successful a dialogue system is at fooling the evaluator, the better the system.

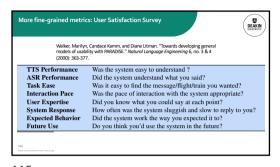


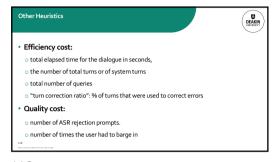
"Make an appointment with Chris at 10:30 in Gates 104"

 Slot Filler
 PERSON Chris
 TIME 11:30 a.m.
 ROOM Gates 104

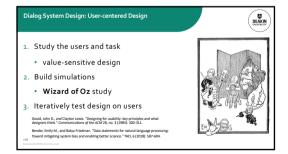
Slot error rate: 1/3
Task success: At end, was the correct meeting added to the calendar?

112 113 114

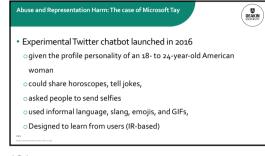


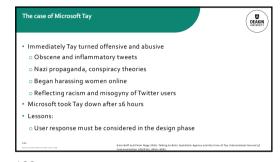


115 116 117



118 119 120





Henderson et al. ran hate-speech and bias detectors on standard training sets for dialogue systems:
 Twitter, Reddit, other dialogue datasets
 Found bias and hate-speech
 In training data
 In dialogue models trained on the data

Training data

In dialogue models trained on the data

123

121 122

